

The American Society for Engineering Education (ASEE) Zone 4 encompasses Pacific Northwest, Pacific Southwest, and Rocky Mountain Sections invites the submission of abstracts for papers, presentations, posters, workshops, and lightning talks for the **ASEE-Zone 4 Conference in Pomona, California on April 16-18th 2026**. ASEE-Zone 4 encompasses PNW: Alaska, Idaho, Montana, Oregon, Washington, and Canada- Alberta, British Columbia, and Saskatchewan; PSW: California, Arizona, Nevada, and Hawaii; RMS: Colorado, South Dakota, Utah, and Wyoming.

This year's theme is Developing Tomorrow's Workforce in the Age of AI and Emerging Technology.

Engineering impacts every aspect of life, in this ever-changing technological landscape, how can educators help to prepare a workforce that is agile and ensure that we are reaching all audiences. This theme challenges us to reimagine engineering education as a catalyst for creativity, innovation, and global progress. Together, we envision a future where learners are inspired to lead transformative solutions that cross boundaries and shape a better world.

Dates to remember:

Abstract Submission Deadline: January 23, 2026

Abstract review Deadline: February 6, 2026

Draft submission Deadline: March 6, 2026

Draft reviews: March 27, 2026

Final Draft upload: April 10, 2026

As with previous Section conferences, submissions on other topics relevant to engineering education will also be considered. A sample list of possible topics to get ideas percolating can be found below.

Rethinking Engineering Education for the Future

Competency-based education models for agile engineers

Interdisciplinary approaches that integrate engineering with humanities, business, or design

Project-based and experiential learning for future-ready graduates

Curriculum redesign to respond to rapid technology shifts

Fostering creativity and innovation in traditionally technical programs

Scaling engineering education through micro-credentials and modular learning

Preparing students for jobs that don't exist yet

Harnessing AI and Emerging Technologies in the Classroom- forward thinking teaching and learning

AI tutors and adaptive learning platforms in engineering education

Using generative AI for design, prototyping, and problem-solving activities

Virtual and augmented reality applications in labs and coursework

Gamification and simulation tools for engineering concepts

Data-driven learning analytics to support student success

Chatbots and digital assistants for academic support

Case studies of AI-enhanced teaching practices

Balancing traditional pedagogy with AI-driven methods

Preparing Students for Emerging Industries	Ethical and responsible engineering in the age of AI- expanding access to emerging technologies
Embedding AI, robotics, quantum, or biotech topics in undergraduate curricula	Frameworks for ethical decision-making in AI-driven design
Developing cross-disciplinary minors or certificates in emerging fields	Responsible data use, privacy, and security in engineering education
Industry collaboration for hands-on projects with cutting-edge tools	Ensuring broad student access to costly or emerging technologies
Career readiness: soft skills + tech skills in a changing workforce	Equity of opportunity in AI-enhanced classrooms (urban, rural, global contexts)
Teaching adaptability and resilience as core engineering skills	Addressing bias in AI tools and its impact on engineering solutions
Role of hackathons, innovation challenges, and maker spaces	Open-source and low-cost platforms to democratize technology use
Preparing students for lifelong learning in uncertain technological futures	Teaching students to consider social, cultural, and global impacts of engineering innovation
Credentialing systems for rapidly evolving skills (badges, stackable certificates)	Policy, regulation, and governance in emerging technologies
Case studies of inclusive engineering education practices	

